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An iterative method is proposed for finding periodic orbits
of strongly nonlinear oscillators. The method combines the
strength of analytical approaches, where the candidate solu-
tion is assumed in the form of a Fourier series, and the con-
venience of numerical methods that can be applied to larger
systems with strong nonlinearity. The proposed method does
not require integration of the vector field over any period of
time and examples presented here illustrate that it is faster
than traditional collocation algorithms, has a large radius of
convergence and is capable of finding several periodic obits
in each solution.

1 Introduction
Nonlinearities are important in many engineering struc-

tures. For example, consider the pinned-pinned beam shown
in Fig.7. As the response amplitude increases the beam must
stretch axially to accommodate the bending deformation and
this bending/axial coupling introduces a stiffness nonlinear-
ity that can dramatically change the nature of the response,
potentially leading to unexpected resonances or even insta-
bility and chaos. The lightweight skin panels on aircraft
and many other structures exhibit this type of nonlinearity
as the displacement amplitude approaches the shell thick-
ness, sometimes at surprisingly small loads (see, e.g. [1]).
One of the first steps toward understanding the response of
a structure such as this is often an analysis in which the pe-
riodic orbits of the nonlinear system are computed. The pe-
riodic solutions of the forced, damped system can be com-
puted and used to predict the bent resonances that are char-
acteristic of the nonlinear frequency response of a nonlin-
ear system, or one may instead compute periodic responses
of the undamped nonlinear system or the Nonlinear Normal
Modes [17], which form the backbone of the nonlinear fre-
quency response. Periodic orbits are also often sought as
a first step in studying bifurcation or chaos in nonlinear sys-
tems. This work presents a new algorithm that can be used to
compute these periodic responses without having to integrate

the equations of motion or requiring symbolic manipulation
of the equations of motion.

Algorithms that attempt to find periodic orbits of au-
tonomous differential equations can be divided into two cat-
egories. The fist class of algorithms use the fact that all pe-
riodic functions have closed form approximations such as a
Fourier series expansion. These algorithms attempt to fit one
of these approximations to a solution of the system and then
extract the set {y0,T} from the approximation form. For ex-
ample, perturbation theory formulates the solution as a series
expansion in small parameters [20], but unfortunately this
limits the method to weakly nonlinear systems. Averaging
methods, such as Harmonic-Balance, rely on a Fourier series
expansion to approximate the periodic orbit of the system
by averaging (evaluating an integral of the response or the
vector field) it over one period. Variational methods can be
used for strongly nonlinear systems, however, like perturba-
tion and averaging methods, they rely on analytic procedures
to find periodic orbits and are not readily extendable to large
systems [7].

A second class of methods finds a set of an initial con-
ditions and a period, i.e. {y0,T}, for which, the solution
of the system that is initiated at the initial condition y0 re-
turns to it after the time T 1. In this sense, a different class of
approaches, generally known as multi-point boundary value
methods [23], restates the problem of finding periodic orbits
of the system

ẍ = f (x), x ∈ Rn. (1)

as finding a point y0 for which

1In this study, we do not consider cases of homoclinic and heteroclinic
orbits.



y0 = y(t0) =
[

x
ẋ

]
t=t0

=

[
x
ẋ

]
t=t0+T

= y(t0 +T ). (2)

Algorithms based on this approach are known as shooting
(or multiple shooting in general) algorithms. In the case of
multiple shooting, the interval [t0, t0 + T ] is divided into M
sub-intervals [tp, tp+1] and consequently the system (1) and
the condition (2) and are

ẍp = f (xp), p = 1, ...,M (3)

and

[
x
ẋ

](p)

τ=1
=

[
x
ẋ

](p+1)

τ=0
and

[
x
ẋ

](1)
τ=0

=

[
x
ẋ

](M+1)

τ=1
, (4)

p = 1, ...,M, p≥ 1

where xp(τ) = x(tp−1 +(tp− tp−1)τ), τ =
t−tp−1
tp−tp−1

. In other
words, the two points in Eq. ((2)) are augmented by (M−2)
intermediate points to help improve the convergence of the
solution of the system to a periodic orbit. It is worth point-
ing out that, since the boundary points are found by inte-
grating the vector field (always) initiated at y(t0), these ap-
proaches implicitly impose the constraint that all the points
in (2) (or (4)) must be on the same solution (see Fig.1).
Shooting algorithms are widely used to satisfy the mentioned
conditions (2) or (4) by minimizing the shooting function,

i.e. minx,ẋ

(
∑

M
1

∥∥∥∥∥
[

x
ẋ

](p)

τ=1
−
[

x
ẋ

](p+1)

τ=0

∥∥∥∥∥
)

or its integral, i.e.

minx,ẋ

(
∑

M
1
´ tp+1

tp

∥∥∥∥∥
[

x
ẋ

](p)

τ=1
−
[

x
ẋ

](p+1)

τ=0

∥∥∥∥∥dt

)
. These algo-

rithms are usually paired with the principle of continuation
[2, 18] to find a branch of solutions. For example, Peeters et
al. recently presented a shooting/continuation algorithm that
has proven effective for solving the class of problems that
are of interest in this work [21]. While these methods have
proven effective in many scenarios, they are sensitive to the
initial guesses for the parameters and require repeatedly in-
tegrating the equations of motion to find the time response
over one period.

The algorithm presented here is somewhat comparable
to approaches, such as that used in the software AUTO [9]
and MatCont [10], which rely on orthogonal collocation to
solve the boundary value problem.

2 Multi-harmonic Multiple-point Collocation
The proposed Multi-Harmonic Multiple-point Colloca-

tion (MMC) algorithm uses an approach that resembles the

multiple shooting algorithm, but is in fact fundamentally dif-
ferent. In essence, rather than enforcing the periodicity con-
dition in Eq. (2) or (4), the solution is expressed in the form
of a Fourier series so that it is automatically periodic with
period T . However, we shall see that in order to acheive
certain computational gains in the algorithm, this does not
necessarily guarantee that the solution(s) obtained have the
same period. Specifically, consider a potential solution, x̄,
that is represented by a Fourier series as follows.

x̄(φ) =
N

∑
k=1


A1k

...
Ank

cos(kφ)+

B1k
...

Bnk

sin(kφ)

 (5)

The candidate solution is periodic over a nondimensional
time base 0 ≤ φ < 2π, where φ = ωt, ω = 2π

T and T ∈ R+is
the period of the Fourier series. The overbar also emphasizes
the fact that this function will not be guaranteed to satisfy the
differential equation at every point on the interval [0,2π], as
will be explained subsequently.

The proposed algorithm solves for the coefficients
A1k, ... and B1k, ... in the candidate solution above by satis-
fying the following condition at a set of collocation points
φk ∈ [0,2π].

¨̄x(φk)− f (x̄(φk)) = 0, k = 1, ...,M (6)

The goal is to combine the strength of analytical approaches,
by using an analytical candidate solution (host) x̄, and the
convenience of numerical methods, which can be applied to
large systems with strong nonlinearity. The solution host can
be differentiated analytically, so the MMC condition can be
checked by simply evaluating the forcing function, f , at each
point. Hence, the MMC condition is an alternative to the con-
ditions (2) or (4), that avoids having to integrate of the vector
field over any period of time. However, because one is not
required to integrate form one point in time to another, each
of the M pairs of collocation points in the MMC condition
may end up coming from a different solution of the system.
Hence, the overbar on x̄ serves as a reminder that x̄ is not
a solution x(t) of the system but simply a solution host that
defines one point on up to M different solutions to the non-
linear system. These concepts are discussed in detail in the
following sections.

In order to more fully understand the difference between
multiple shooting and MMC, consider a periodic candidate

solution host ȳ =
[

x̄
˙̄x

]
. The periodicity condition in Eq. ((2)

) is automatically satisfied by the solution host on the period
T , so it might appear that all that remains is to ensure that
the solution host satisfies the differential equation using Eq.
(6). However, the collocation points have not been forced to
pertain to a single solution y(t), so each of the M pairs of
points ȳ(φk) could in fact correspond to a different solution



with a different period Tk. This is shown schematically in
Fig. 1, and also contrasted with multiple shooting, where the
candidate solution is forced to be continuous from one subset
to the next.

Figure 1. (a) Illustration of two-point collocation condition used in
shooting algorithms. (b) Multiple-point collocation condition used in
multiple shooting algorithms. (C) Multiple-point collocation condition
used in the proposed algorithm. The 2M points are used to create
M independent two-point collocation conditions.

Two iterative algorithms, discussed in Sections 3.1 and
3.2, are presented to adjust the coefficients, A1k, ... and
B1k, ..., and the period, T , until the MMC condition is sat-
isfied. The proposed method is exemplified for a simple two
dimensional (n=2 ) and a rather large, ten dimensional (n=10
) system in Sections 4 and 5.

2.1 Difference Function
In order to find a solution that satisfies Eq. (6), we define

the following difference function, which can be shown to be
identical to the periodicity condition in Eq. (2),

δk(x̄) = ¨̄x(φk)− f (x(φk)) = 0, k = 1, ...,M, (7)

where the only difference beteween this and Eq. (6) is that
the argument of f is now the true solution to the system.
Now, consider the case where δk 6= 0. In this regard, suppose

that a (yet unknown) solution of the system x and a multi-
harmonic candidate solution x̄ satisfy Eq. (7) with x( φk

2π
T ) =

x̄(φk) but they differ after one period so x( 2π+φk
2π

T ) + δk =
x̄(φk) where δk 6= 0 is small. Inserting this into the MMC
condition, one can write

¨̄x(φk)− f (x̄(φk)+δk) = 0, (8)

or approximately

¨̄x(φk)− f (x̄(φk))−J f
x (x̄(φk))δk w 0, (9)

and so the difference can be found

δk w
[
J f

x (x̄(φk))
]−1

[ ¨̄x(φk)− f (x̄(φk))] (10)

and can finally be expressed in terms of the difference func-
tion, δ̄k(x̄) = [ ¨̄x(φk)− f (x̄(φk))], which depends only on the
candidate solution x̄.

δk =
[
J f

x (x̄(φk))
]−1

δ̄k(x̄) (11)

Hence, as long as J f
x (x̄(φk)) is not singular at x̄(φk), i.e. f is

monotonic2 at the collocation points x̄(φk), one can conclude
that it is possible to reduce δ̄k(x̄) and as a result when the
multi-harmonic multiple-point collocation condition is met
at a set of collocation points, i.e.

δ̄k(x̄) = ¨̄x(φk)− f (x̄(φk)) = 0, k = 1, ...,2M. (12)

then each of these points, φk, on the candidate solution
host are also on the solutions of the system that satisfy
(7). Equivalently, x̄(φk) collocates with points on a peri-
odic solution of the system, i.e a solution x which satisfies
x( φk

2π
T ) = x( 2π+φk

2π
T ). The condition in Eq. ((12)) then im-

poses a constraint that plays the same role as integration in
multi-point boundary value problem methods by implicitly
forcing the candidate solution x̄ to collocate with the solu-
tion of the system x at finite number of points in the state
space. Note that conditions described above are also met if
the true solution has a shorter period, for example, T

n , where
n is an integer. Hence, the solution at each collocation point
could also have a different period,T .

2The definition of monotonicity used here is derived from Monotone
Operator Theory, which is explained in detail in the following references [5,
6, 27]. The general theory can be simplified considerably for the purposes
of this work, as outlined in the Appendix.



3 Multi-harmonic Multiple-point Collocation: Numeri-
cal Algorithms

In this section we propose two algorithms to modify the can-
didate host x̄ until it satisfies the multi-harmonic multiple-
point collocation condition (12).

3.1 Inexact Golden-Section Line Search MMC
Here we propose a steepest descent algorithm augmented by
an inexact golden-section line search subroutine. The men-
tioned inexact line search is performed to find the step-size at
each iteration that satisfies Wolfe conditions (to find inexact
optimal step-size at each iteration). The immediate and main
advantages of using this algorithm is to first to relax the need
to calculate the inverse of any slope functions (Jacobian, or
Hessian), which is required in Newtonian algorithms, while
providing the same level of accuracy in choosing a step-size
as is usually associated with Newtonian methods. In this re-
gard we first define a deviation function

D =
2M

∑
i=1

δ̄
T

δ̄

=
2M

∑
i=1

[ f (x̄(φi))− ¨̄x(φi)]
T [ f (x̄(φi))− ¨̄x(φi)]

(13)

Next, starting from an initial guess x̄(0) determined by
{C(0),ω(0)} where

C(0) = [A11 · · · A1N |B11 · · · B1N |
· · · |An1 · · · AnN | |Bn1 · · ·BnN ]

T
0

(14)

and ω(0) is initial guess for the frequency of the multi-
harmonic candidate host. We then find the next approxima-
tion by navigating the candidate solution x̄ in the directions
which are functions of the gradient of D with respect to the
coefficient vector C, and the frequency ω denoted by gD

C and
gD

ω respectively. Specifically,

Cq+1 =Cq− rcvq
Cq

ω
q+1 = ω

q− rωvq
ωq .

(15)

where vk
Ck and vk

ωk are search directions (defined below) and
rc and rw = αrc, α∈R+ are the step size control parameters,
which are determined using an inexact Golden-Section line
search method. The search directions, for both coefficient
vector and frequency, are the steepest descent directions at
the first step. Subsequent steps, however, are defined recur-
sively by

vk+1
Ck+1 = gD

Ck+1 +diag(γk
i )v

k
Ck , v0

C0 = gD
C0

vk+1
ωk+1 = gD

ωk+1 + γ
kvk

ωk , v0
ω0 = gD

ω0 ,
(16)

where γk ∈ R is chosen as

γ
k
Ck

i
=

∥∥∥∥gD
Ck+1

i

∥∥∥∥2

(vk
Ck)

T (gD
Ck+1

i
−gD

Ck
i
)

γ
k
ωk =

(gD
ωk+1)

2

(vk
ωk)(gD

ωk+1 −gD
ωk)

,

(17)

This reduces minimization of (13) to a conjugate gradient
method minimization problem[14, 12, 13]. Specifically, at
each iteration, a minimization problem defined by

min
rk
c

D(Cq+1,ωq+1) (18)

must be solved to find an optimal step-size rk
c . However,

while an exact solution to Eq. (18) is not available, an in-
exact solution can be found by finding a step-size rk

c using a
Golden-section line search described by

rk+1
c = rk

c/αGS, r0
c = rmax

c ∈ R+, (19)

where αGS = 1+
√

5
2 is the golden section ratio, that satisfies

the (strong) Wolfe conditions

1. D(Cq+1,ωq+1)−D(Cq,ωq)≤ δ

[
rk

cCqT
gD

Cq +αrk
cωqgD

ωq

]
,

2. CqgD
Cq+1 +ωqgD

ωq+1 ≥ σ

[
CqT

gD
Cq +ωqgD

ωq

]
.

in which 0 < δ < σ < 1. Applying the Wolfe conditions
and setting parameters δ and σ ensures that the the deviation
function D and its gradients gD

C and gD
ω decrease sufficiently

at each step. Usually δ is chosen to be very small and σ to
be very close to 1. Throughout this study theses parameters
are kept constant δ = 0.01, σ = 0.9 using the suggestions in
[14, 12, 22].

Figure 2. Schematic representation of a case of homogenous con-
vergence. Left: The candidate periodic solution x̄ changes its shape
in a manner that reduces the sum of the norms of the distance vec-
tors di, i.e. the deviation function D. Right: As the deviation function
D tends to zero, the candidate solution x̄ converges to periodic orbits
of the system.



In this regard, defining

Γ(vT ) =


vT 01×2N

... 01×2N

01×2N vT . . .
...

...
. . . . . . 01×2N

01×2N · · · 01×2N vT

 , (20)

and

α
T
m =

[
cosφm 22 cos(2φm) · · · (N)2 cos(Nφm)

sinφm 22 sin(2φm) · · · (N)2 sin(Nφm)
]

β
T
m =

[
cosφm · · · cos(Nφm)

sinφm · · · sin(Nφm)
]

φm =
m
M
(2π) ∈ [0,2π), m = 1, ...,M.

φm+M = 2π+φm

(21)

one can readily show that

x̄(k)m = Γ(βT
m)C̄

(k)

δ̄
(k)
m = ω

2
Γ(αT

m)C̄
(k)

+ f (x̄(k)m )

Jδ̄
(k)
m

C = ω
2
Γ(αT

m)+J f
x (x̄

(k)
m )Γ(βT

m)

Jδ̄
(k)
m

ω = 2ωΓ(αT
m)C̄

(k)

(22)

where Ju
v defines the Jacobian of the vector u with respect to

the vector v.
Therefore, the gradient vectors can be found as

gC = ∇CD = ∇C

2M

∑
i=1

(δ̄
T
i δ̄i) = 2

2M

∑
i=1

(
Jδ̄i

C

)T
δ̄i

gω := ∇ωD = ∇ω

2M

∑
i=1

(δ̄
T
i δ̄i) = 2

2M

∑
i=1

(
Jδ̄i

ω

)T
δ̄i.

(23)

3.2 Newtonian MMC
One can also use a Newtonian algorithm to minimize the

vector δ by modifying the candidate solution as

Cq+1 =Cq +∆Cq

ω
q+1 = ω

q +∆ω
q.

(24)

where ∆Cq and ∆ωq are computed by solving a set of overde-
termined linear equations defined by

[Jδ̄
q
i

Cq Jδ̄
q
i

ωq ]

[
∆Cq

i
∆ω

q
i

]
= δ̄

q
i , i = 1, ...,2M[

∆Cq
i

∆ω
q
i

]
=

[
∆Cq

j
∆ω

q
j

]
=

[
∆Cq

∆ωq

]
, i, j = 1, ...,2M

(25)

Note that the constraint condition is enforced to guarantee
uniqueness of the solution host (defined by Cq and ωq) in
each iteration. The system in (25) can be further simplified
by averaging to obtain

[
2M

∑
i=1

Jδ̄
q
i

Cq

2M

∑
i=1

Jδ̄
q
i

ωq ]

[
∆Cq

∆ωq

]
=

2M

∑
i=1

δ̄
q
i (26)

which can be solved for ∆Cq and ∆ωq using the Moore-
Penrose inverse. In another (more traditional) approach one
can enforce uniqueness of the solution host by recasting the
system in (25) as


Jδ̄

q
1

Cq Jδ̄
q
1

ωq

...
...

Jδ̄
q
2M

Cq Jδ̄
q
2M

ωq

[∆Cq

∆ωq

]
=

 δ̄
q
1
...

δ̄
q
2M



which, due to good results obtained from solving the smaller
problem in (26), was not pursued in this study.

4 Case Study I: A 2DOF System
This section first demonstrates how the MMC algorithm

modifies a periodic solution host to match a periodic solution
of a system. Then, we will examine convergence properties
of the two proposed versions of the MMC algorithm and pro-
vide a comparison with a widely used Shooting algorithm in
terms of radius of convergence and speed. In this regard we
choose a familiar two DOF system

[
ẍ1
ẍ2

]
=

[
−2 1
1 −2

][
x1
x2

]
+

[
− 1

2 0
0 0

][
x3

1
x3

2

]
, (27)

which has been extensively studied in [24, 25, 17, 3]. This
oscillator is known to have branches of periodic obits, some-
times called nonlinear modes of vibration [28, 17] that have
been calculated both analytically and numerically[3].

4.1 Homogenous Convergence
Figures 3 and 4 illustrate how the proposed MMC algo-

rithm allows one to find the Coefficients of a Fourier series
expansion of a periodic solution of the system and its pe-
riod by gradually modifying both the Coefficients and the
period of the solution host. We refer to this type of conver-
gence, where all the pairs of collocation points converge to



one periodic solution of the system, as a homogenous con-
vergence. In this example, the algorithm was initiated at the
point y = [1.905,0.9253,0,0]T due to randomly generated
coefficients of the initial Fourier series expansion, A(0)

i j with

B(0)
i j = 0 and T (0) = 19.35. The control parameters were set

to r(0)c = 1e−6, r(0)w = 1e−8, N = 10, M = 20, δ = 0.05 and
σ = 0.9.

Figure 3. The acceleration and force vectors, i.e. ẍ and f (x), of the
candidate solution.

Figure 4. The displacement is shown for the candidate solution

x(k)1 (t) where it matches the true periodic orbit of the system with

x(36)
1 (t).

As shown in Fig. 3, the initial acceleration of the so-
lution host, i.e. ¨̄x(0), and the force provided by the vector
field, i.e. f (x̄) generate disparate shapes initially. However
after K = 36 steps in the direction provided by (15), those
two converge to an identical shape. This convergence, elab-
orated in Fig. 4, is a result of considerable change in both
coefficients of the Fourier series (shape and amplitude) and
the period (length) of the solution host. The initial guess,
which had a period of T = 19.35, changes as the candidate

solution navigates to a periodic orbit of the system, i.e. to-
ward satisfying (12), until it converges to a periodic solution
with the period T = 16.88.

4.2 Radius and Speed of Convergence
The MMC algorithm seems to have a large radius of

convergence especially using the conjugate gradient version.
For instance, Fig. (5) shows that the the candidate solution
(in the previous example) converges to a periodic orbit that
is quite far from its initial start point in the state space and its
initial period.

Figure 5. The path of candidate solution in the state space as it
converges to a periodic orbit of the system.

To further clarify this feature, we compare the radius and
speed of convergence of the conjugate gradient version of
MMC (MMC-CG), it’s Newtonian counterpart (MMC-N)
and a shooting algorithm proposed in [21] for the same ini-
tial guess comprised of both initial conditions and periods.
To do this, the coefficients A(0)

i j were selected for MMC-CG
and MMC-N and then the equivalent state vector at t = 0 was
found and used to initiate Shooting. Tables 1 and 2 show the
initial conditions, period and the results for two types of typ-
ical scenarios where the initial guesses are far from any or
extremely close to a periodic solution of the system (27), re-
spectively.
Set I- In this set, the initial guess contains the initial condi-
tions of a periodic solution with its (initial) period chosen far
from the actual period (T (0) = 19.1337� T ∗ = 40.85). The
results show that MMC-CG was able to converge to different
periodic solutions (including the initial guess with the cor-
rect period) depending on what values the user chooses for
the algorithm’s parameters. For instance, by choosing a very
small step size for the coefficients and a much larger step size
for the period of the solution host, i.e. setting rc = 1e− 12
and rw = 1e− 3, the MMC-CG was able to find the a pe-
riod that produced a solution close to the initial state. In
contrast, as shown in Fig.5, choosing larger coefficient and
smaller period step sizes, i.e., (rc.rw) = {(1.33e− 8,1e−
6),(2e−8,1e−8),(1.33e−7,1e−8),(1e−6,1e−8)} and



(δ,σ) = (0.05,0.9), led to finding periodic solutions farther
form the initial guess.

Figure 6. The path of candidate solution host in the state space as it
converges to a periodic orbit of the system using the MMC-CG. (blue)
initial guess, (black) intermediate result, (red) final solution. For differ-
ent sets of parameters, the MMC-CG algorithm converged to different
solutions on different branches of periodic solutions previously found
in [3, 4].

These extreme cases show how large the radius of conver-
gence is for MMC-CG, and while this proves the versatility
of the algorithm, they come at the price of large number of
steps (iterations) and slower CPUTime as outlined in Table
1. In the cases of the MMC-N or Shooting algorithms, if
the algorithm converged, it always converged to the same
solution regardless of its settings. However, because of
the length of the solution host in the MMC algorithm,
i.e. 2T , the MMC-N (and also MMC-CG) are capable of
(prone to) converging to symmetric periodic solutions, i.e.
x(t) = x(T ∗− t), with half periods T = T ∗/2. Case 2 in the
Table 1, shows such a convergence. In this comparison set,
the Shooting algorithm did not converge to any solution.

Set II- While the previous set was mainly concerned with
the radius of convergence of the three algorithms, in this set,
we focus on speed of convergence. All algorithms were ini-
tiated extremely close to a periodic solution of the system in
(27), i.e. by applying a 0.005% relative error to the initial
condition and the period of the solution. The solutions, CPU
time and number of iterations are shown in Table 2. Since the
MMC algorithms do not require integration, both the CG and
(even more so) the Newtonian versions proved to be faster
than the Shooting algorithm, although MMC-CG usually re-
quired more steps to converge to a solution. It is important
to note that the CPUTime numbers given here should only
be used as a rough reference. One cannot robustly evalu-
ate speed without also comparing accuracy, which turns out

to be quite challenging here because the algorithms describe
the response differently, sometimes converge to very differ-
ent solutions, and, in the case of MMC, may converge to
multiple solutions if heterogeneous convergence is obtained.
Speed and accuracy will be explored more rigorously in a
future work.

Case Method Final State/Period CPUTime Iter’ns

1.1 MMC-CG
[3.4054,2.8010,0,0]/

3.2500 190
13.9930

1.2 MMC-CG
[3.5693,2.7901,0,0]/

11.4375 540
45.9210

1.3 MMC-CG
[3.6657,2.7828,0,0]/

27.7969 1592
50.27310

1.4 MMC-CG
[3.7351,2.7779,0,0]/

24.5156 1085
18.2131

1.5 MMC-CG
[3.8097,2.7759,0,0]

0.0831 8
/40.85

2 MMC-N
[3.8128,2.7757,0,0]/

0.1250 5
20.4403

3 Shooting Did Not Converge* - -

Table 1. Comparison Set I- All algorithms were initiated at y(0) =
[3.8097,2.7759,0,0], T (0) = 19.1337 as the initial (equivalent)
guess of initial conditions/period. A true periodic solution exists with
the initial conditions y(0) = [3.8097,2.7759,0,0] and period T ∗ =
40.85. The MMC-CG converges to five different solutions provided
different sets of step sizes.
* The algorithm was terminated after 1200 iterations.



Case Method Final State/Period CPUTime Iter’ns

1 MMC-CG

[-7.891622796236744,

0.5313 16-32.5466172913094,0,0]

/4.467174194952996

2 MMC-N

[-7.891588095980071,

0.1563 6-32.5465986978077,0,0]

/4.467174782378451

3 Shooting

[6.555046013403119,

2.0625 747.6580858905036,0,0]

/4.467174837304333

Table 2. Comparison Set II- All algorithms were initiated at y(0) =
[−7.891535147520359,−32.546593569114329,0,0], T (0)=
4.467174837304333 as the initial (equivalent) guess of initial
conditions.

5 Case Study II: A 10DOF System
To explore the scalability of the algorithm, it was also

applied to a more complicated system with 10 DOF and thou-
sands of parameters. This system also exhibits numerous
cases of heterogeneous convergence and thus is an informa-
tive example. This system, shown in Fig.7, consists of a ge-
ometrically nonlinear beam, that is modeled in the Abaqus
software resulting in 123 degree-of-freedom finite element
model for the structure., coupled with a torsional spring at
one end. Then, using an approach explained in [1], the di-
mension of the system was reduced. The mentioned proce-
dure led to a ten-dimensional reduced order model that is
described by

ẍ = f (x)

= Klx+
1
2

Knl1(xi)x+
1
3

Knl2(xix j)x, i, j = 1, ...,10,
(28)

where Kl is a constant matrix defining the linear part of the
vector field and Knl1 and Knl2 are function matrices that de-
fine the quadratic and cubic parts of the vector field, respec-
tively. This system was studied in more detail in [19]. For the
purposes of this study, this reduced model will be considered
the truth model and any approximation made in representing
the structure with a 10 DOF model is irrelevant.

Figure 7. The ten DOF system is a reduced order model of a a
geometrically nonlinear beam coupled with a linear torsional spring.

Figure 8. A periodic solution of the system (28) found after a ho-
mogeneous convergence.

The proposed method was applied to this system and
several cases of homogenous convergence were found using
MMC-N with randomly generated set of initial Fourier se-
ries coefficients A(0)

i j , with B(0)
i j = 0. One such solution is

shown in Fig. 8. The response is dominated by coordinate
5, corresponding to the 5th linear mode of the beam, yet it
also shows participation of many of the other coordinates
due to the strong geometric nonlinearity that is captured in
the model.

5.1 Heterogeneous Convergence

This system also exhibited the interesting case where the
M collocation points on the solution host land on more than
one periodic orbit of the system. In such cases, although all
the collocation points are guaranteed to be on periodic solu-
tions of the system, because they satisfy (12), the candidate
solution (and its period) will not match any of the final pe-
riodic solutions (or their periods). This can occur because
the periodic solution host (by construction) only satisfies the
equation of motion at the collocation points, but it does not
guarantee that it is satisfied away from the collocation points
nor does it require that the collocation points all correspond
to one solution of the system. To illustrate such a situation,
we present a case where the candidate solution converges to
three different periodic orbits.

In this regard, Fig. (9) shows the x1(t) component of the
(final) candidate solution and five resultant periodic orbits,
three of which are distinct. These were found by integrat-
ing the equation of motion over one period, initiating at the
state given by each of the collocation points (at time zero)
and then integrating over the period defined by the solution
host. This shows that, although all 5 points satisfy the con-
dition (12), they converged to three different periodic orbits.
Furthermore, as stated before, the (final) candidate solution
does not (and cannot) match any of the periodic solutions.



Figure 9. A case of heterogeneous convergence. The 5 pairs of col-
location points converge on three different periodic solutions. Note
that each of the solutions 1 through 5 were computed by integrat-
ing the equations of motion from the collocation points indicated, but
starting at time zero, so the solutions do not necessarily intersect the
solution host at the collocation point.

Note that if heterogeneous convergence does occur, then
one does not immediately know the period of the solutions
that have been obtained. This could be remedied in several
ways. First, one can check for heterogeneous convergence
simply by calculating δ̄k(x̄) at additional points between the
collocation points. If δ̄k(x̄) is not close to the tolerance then
it is likely that such a case has been obtained. If one suspects
that the solution host is not a single solution on the full pe-
riod T then one way to remedy the situation is to integrate
the equations of motion over multiple integer fractions of the
period and then to check whether the solution is periodic on
any of the trial periods. This approach was used in the fol-
lowing to determine how many unique solutions had been
obtained.

Table 3 shows that one finds even more periodic solu-
tions as the number of pairs of collocation points increases.
Furthermore, it seems that increasing the number of collo-
cation points affects the CPUTime and the number of iter-
ations in a sub-linear manner. Figure 10 shows the periodic
solutions corresponding to the first pairs of collocation points

in the second and third cases represented in Table 3 respec-
tively.

Case # Colloc’n Points # Sol’ns CPUTime Iter’ns

1 5 3 0.0713 3

2 20 14 0.1406 3

3 50 37 0.2656 3

Table 3. Increasing number of collocation points leads to more pe-
riodic solutions on the solution host without usually affecting number
of iteration required by MMC-N to converge.

It is interesting to consider what regions of the solution
space are captured in each set of solutions of the MMC al-
gorithm. One convenient way of characterizing the solution
space is to use a frequency-energy plot where the frequency
and total conserved energy in the solution are shown. Con-
tinuation algorithms are often used to determine how the fre-
quency and energy of the low-energy linear modes of the sys-
tem evolve with increasing energy, and all of this information
can be readily shown on the frequency energy plot.

All periodic solutions of any system that (locally) satis-
fies the Implicit Function Theorem (IFT) will generate a con-
tinuous branch of periodic solutions [16, 8, 15, 26]. Continu-
ation is a numerical process where a slightly changed state of
a known solution is used to approximate the next solution on
a continuous branch of periodic solutions[2, 9, 11, 18, 21].
The set of known solutions are very limited and usually only
includes the periodic orbits of the underlying linear linear
system at very low energies. In this sense, the MMC algo-
rithm can be extremely helpful, first, by providing a rich set
of initial known solutions that is not limited to the periodic
orbits of the underlying linear system. Second, since it does
not require integration of the equations of motion, so it may
time needed to search for a solution at each point [9, 10, 17].

In this regard, Fig. 11 shows 6 branches of periodic
solutions (continuations of the periodic solutions, or lin-
ear modes, of the underlying linear system, obtained using
a Shooting-based continuation algorithm) and multiple dis-
crete solutions found on each solution host using MMC-N.
One can use the initial conditions of a linear periodic so-
lution ȳ0 to initiate MMC directly on its branch by forcing
the constraint ∑

N
j=1 Ai j = x̄i(0) , ∑

N
j=1 Bi j =

T ∗
2π

˙̄xi(0) i = 1, ...,n
where T ∗ is the period of the mentioned solution. The co-
efficients then were perturbed as explained for simulations
performed in Set II of Section 4.2 (with 0.01 relative error).
This way, the MMC-N algorithm was initiated on the afore-
mentioned branches of periodic solutions and close to the
linear solution with the highest energy with 45 pairs of col-
location points. Note that, by initiating the MMC algorithm
around a solution with the highest energy in the (locally) lin-
ear regions3, one allows the collocation points to converge

3Any region with a very small change in fundamental frequencies of



on solutions with lower energies that share the same funda-
mental frequencies. This procedure was repeated 8 times re-
sulting in 8 solution hosts, where each contained between
4 to 17 distinct periodic solutions. The solutions found on
each of the mentioned solution hosts are shown with alike
markers on top of their corresponding branches of periodic
solutions in Fig. 11. Moreover 7 sets of solutions obtained
using MMC-N with random initial settings reveal cases of
internal resonances (shown in the magnified view) . These
solutions are easily overlooked by shooting-based continu-
ation algorithms; continuation tends to follow only the pri-
mary branches [3].

Figure 10. Phase portraits of the first periodic solutions on the so-
lution hosts in two cases (of 14 and 37 respectively) shown in Table
3. Top: case 2. Bottom: Case 3

For instance, region A in Fig. 11 contains two periodic
solutions found with MMC-N. The first solution, marked
with a circle in Fig. 11 is shown in Fig. 12. This solu-
tion is identical to one found by the shooting-based continu-
ation and represents a periodic solution associated to the first
mode of vibration of the system (28). The second periodic
solution, marked with a star in Fig. 11 is shown in Fig. 13
and exhibits a series of internal resonances ranging from 1:5
internal resonance (between the first and the fifth coordinate)
to 1:18 internal resonance between the first and the eighth co-
ordinates as evident in the provided time response. However,
this solution cannot be found using a Shooting-based contin-
uation algorithm unless the bifurcation point and the type of

periodic solutions. At lower energies, these regions are quite large and as
the energy of the solutions increase, they become smaller.

bifurcation are accurately known[3, 4]. Furthermore, since
the MMC algorithm is capable of finding multiple solutions
using one shared solution host it is intrinsically compatible of
discovering multiple branches of periodic solutions at once.

Figure 11. Frequency-energy representation of periodic solutions
of the system in Eq. (28) using a Shooting-based continuation al-
gorithm (6 branches of periodic solutions) and MMC-N. Multiple dis-
crete solutions, found on each solution host, are shown with similar
markers.

Figure 12. Phase portraits of the periodic solution (T =
0.02225sec ) of the system in Eq. (28) marked with a circle on
Branch 1 in region A.



Figure 13. Top: Phase portraits of the second periodic solution
(T = 0.023sec ) of the system in Eq. (28) in region A. Bottom:
This solution represents a case with multiple internal resonances.
The time history of the response reveals cases of 1:5 and 1:18 inter-
nal resonances between the first and the fifth and also the first and
the eight coordinates respectively.

6 Conclusion and Future Work
In summary, we have presented a simple yet effective

method for finding periodic orbits of conservative nonlinear
systems. The results obtained thus far for a small system and
a relatively large system show that the method consistently
converges to periodic solutions with good accuracy. The
method uses a similar condition to the one used in multiple-
point shooting methods, however, it does not require integra-
tion of the vector field over any period of time and is capable
of finding more than one periodic orbit of the nonlinear sys-
tem in each solution. Although not proven rigorously yet, the
method seems to have a larger radius of convergence and to
be more computationally efficient than shooting. In a future
work the algorithm will be implemented in a continuation
framework and further refinements will be presented.

Appendix A- Monotonicity of Multi-dimensional Multi-
variate Functions

In order to explain monotonicity, we begin by defining
three sets for a multivariate function.

Definition I- Suppose f : Rn→ R is Cr, r ≥ 1, Dn 3 u0
is a closed disk and f (u0) = p0. Then the level set, super-
level set and sub-level set of the function f at the point u0
are respectively defined as the sets

Lu0 = {u| f (u) = p0,u ∈ Dn},
L+

u0
= {u| f (u)≥ p0,u ∈ Dn} and

L−u0
= {u| f (u)≤ p0,u ∈ Dn}.

In order to simplify the notation, in the following discus-
sion, we will refer to the above sets as L , L+ and L−.
For example, consider the multivariate function f (x,y) =
2x2− y− 1

2 x3.

Figure 14. On the closed disk define by D2 = {(x,y) ∈ R2|x2 +
y2 ≤ 1}, the blue region of the disk highlights the sub-level set and
the red region highlights the super-level set. The intersection of the
two is the level set.

Now we are ready to define monotonicity for multivari-
ate functions as the following.

Definition I - Suppose f : Rn → R is Cr, r ≥ 1, Dn is
a closed disk. The function f is monotone at u0 ∈ Dn if the
sets L+/L 4and L−/L are both simply connected.

Note that, the vector ∇ f is always perpendicular to the
level-set unless

The level set is a direct sum of multiple manifolds, e.g.
two curves crossing at u0 as shown in Fig. 15.
The level set is a single point, e.g. like the point u0 =

(0,0) for the function f = e−(x
2+y2),

which both are excluded by the above definition.

4Note that A/B≡ A−A∩B.



Figure 15. On the closed disk define by D2 = {(x,y) ∈ R2|x2 +
y2 ≤ 1}, the blue region of the disk highlights the sub-level set and
and the red region highlights the super-level set. The intersection of
the two is the level set.

As it’s evident in the above figure, neither of sets L+/L
and L−/L are connected. This fact can be further illustrated
In Fig. 16. Next, we can define monotonicity for multi-
dimensional multivariate functions as the following.

Definition II - Suppose f : Rn → Rm is Cr, r ≥ 1, Dn

is a closed disk. The function f is monotone at u0 ∈ Dn

if all fi, i = 1, ..,m are monotone at u0 and Li t L j 6=i, i, j ∈
{1, ...,m}5.

For example, suppose f (x,y) = [2x− y− 1
2 x3,2y− x]T .

Also, suppose that (p,q) represents an arbitrary point in R2

and [2p− q− 1
2 p3,2q− p] = [P,Q]. It is readily apparent

that 2x− y− 1
2 x3 and 2y− x are both monotone multivariate

functions. The level set of the two functions can be defined
by L1 = {(x,y) ∈ R2|2x− y− 1

2 x3 = P} and L2 = {(x,y) ∈
R2|2y−x = Q}. In other words, L1 and L2 define two curves
(M1 manifolds) y = 2x− 1

2 x3−P and y = − 1
2 (x+Q) with

the tangent vectors [2− 3
2 x2,−1]T and [−1,2]T respectively.

This way, one can conclude that L1 t L2 except when there
exists α ∈ R for which

[
2− 3

2 x2

−1

]
= α

[
−1
2

]
holds. One can solve the equation above and obtain α =
− 1

2 and also 2− 3
2 x2 = 1

2 which yields x = ±1. Thus the
function f is monotone almost everywhere, i.e. everywhere
but at x = ±1. In this case, the results can also be obtained
by solving det

∣∣∣J f
(x,y)

∣∣∣ = 0. Of course, in the general case
expressed in the Definition II, one can readily prove that for
f :Rn→Rm, if m> n the f cannot be monotone everywhere.
By following the above analysis, one can provide another
example, i.e. the function f (x,y) = [2x−5y− 1

2 x3,2y− x]T ,
which is monotone everywhere.

5A t B reads the set (manifolds) A intersects the set (manifold) B.

Figure 16. The disk define by D2 = {(x,y) ∈ R2|x2 + y2 ≤ 1}
can be described by the direct sum of the sets L+/L , L and
L−/L . Top: In this case the sets L+/L and L−/L are both
simply connected. Bottom: In this case neither of the sets L+/L
and L−/L are simply connected.

Locally Monotone and Locally Injective Functions
For a continuous single variable function, strict mono-

tonicity implies that the function is an injection (a one to
one map). As mentioned earlier, for multivariate functions,
monotonicity is defined locally in the neighborhood of a
point. In order to facilitate the comparison between the two
properties, i.e. monotonicity and injectivity, let’s define in-
jectivity by using the concept of the level-set.
Definition- Suppose f : Rn→ R is Cr, r ≥ 1, Dn is a closed
disk in Rn. The function f is an injection in Dn if and only
if, for every point u ∈ Dn

Lu = u. (29)

With this alternative form of the definition of injectivity,



it is clear that non-constant multivariate functions cannot
be injective. For instance, for a function of two variables,
i.e. f (x,y), the above definition demands that the following
equation

f (x,y) = c, (30)

to always have a single solution {(x0,y0)| f (x0,y0) = c}. In
other words, every point u0 = (x0,y0) in a closed disk D2

must represent a local extrema, i.e ∇
f
(x,y)(u0) = 0.

This definition can be readily extended to multi-dimensional
multivariate functions as it follows.
Definition- Suppose f : Rn→Rm is Cr, r≥ 1, Dn is a closed
disk in Rn. The function f is an injection in Dn if and only
if, all fi are injections in Dn.

One can confirm that the same discussion, presented
above, about injectivity of multivariate functions also holds
for multi-dimensional multivariate functions. Therefor, non-
constant multi-dimensional multivariate functions cannot de-
fine injections.
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