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Substructuring methods have been widely used in structural dynamics to divide large, 

complicated finite element models into smaller substructures. For linear systems, many 

methods have been developed to reduce the subcomponents down to a low order set of 

equations using a special set of component modes, and these are then assembled to 

approximate the dynamics of a large scale model. In this paper, a substructuring approach is 

developed for coupling geometrically nonlinear structures, where each subcomponent is 

drastically reduced to a low order set of nonlinear equations using a truncated set of fixed-

interface and characteristic constraint modes. The method used to extract the coefficients of 

the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any 

modification to the commercial FEA code, but computes the NLROM from the results of 

several nonlinear static analyses. The NLROMs are then assembled to approximate the 

nonlinear differential equations of the global assembly. The method is demonstrated on the 

coupling of two geometrically nonlinear plates with simple supports at all edges. The plates 

are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and 

the nonlinear normal modes (NNMs) of the assembled equations are computed to validate 

the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite 

element model down to only 23 DOF, while still accurately reproducing the first three NNMs 

of the full order model.  

Nomenclature 

rB , rA   = quadratic and cubic nonlinear stiffness, respectively 

dF    = vector of applied static forces using Implicit Condensation and Expansion 

()xf NL   = vector of nonlinear restoring forces  

()tf   =  vector of external forces 

rf̂   = scaling for the r
th

 mode using Implicit Condensation and Expansion 
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I   = identity matrix 

K   = linear stiffness matrix 

CCK̂   = CC reduced stiffness matrix 

L   = connectivity matrix 

M   = linear mass matrix 

CCM̂   = CC reduced mass matrix 

()qN1   = Quadratic nonlinear modal stiffness matrix 

()qN2   = Cubic nonlinear modal stiffness matrix 

p , q   = vector of modal coordinates 

up   =  vector of unconstrained modal coordinates 

cq   =  vector of characteristic constraint modal coordinates 

kq   =  vector of fixed-interface modal coordinates 

()tr   =  vector of reaction forces 

CBT   = Craig-Bampton transformation matrix 

CCT   = fixed-interface with characteristic constraint modes transformation matrix  

x , x##  = vector of displacements and accelerations, respectively 

ū  = fixed-interface mode shape matrix 

ű  = mass normalized fixed-interface mode shape vector 

ȿ  = diagonal matrix of fixed-interface modal frequencies 

()qɗ   = nonlinear modal restoring force 

w  = linear natural frequency 

ɣ  = boundary mode shape vector 

Ɋ  = constraint mode shape matrix 

Ɋ̂  = characteristic constraint mode shape matrix 

()
T   

= transpose operator 
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()
†
  =  pseudo-inverse operator 

 

Keywords: substructuring, component mode synthesis, geometric nonlinearity, interface reduction, nonlinear normal 

modes. 

I. Introduction  

Structures with geometric nonlinearities [1, 2], or large deformations, can be encountered in thin-walled 

members while the materials remain linear elastic. Model reduction on these types of systems have been motivated 

in the last decade or so by NASA [3-7] and the United States Air Force [8-11] to design and model structural 

components of reusable hypersonic aircraft using finite element analysis (FEA). Extreme thermal, pressure and 

acoustic loads during flight can cause the external skin panels to vibrate with large response amplitudes requiring 

FEA analysis with geometric nonlinearity to model structures with detailed geometric features (e.g. stiffeners or 

curved surfaces). This work addresses some of the challenges associated with model reduction of such geometrically 

nonlinear FEA models by developing a modal substructuring, or component mode synthesis (CMS), approach. This 

is accomplished by first dividing the structure of interest into two or more subcomponent FEA models, reducing 

each of these sub-models to a low order set of nonlinear modal equations, and coupling them to obtain a model of 

the assembly. In the present work, we propose to reduce the nonlinear subcomponent models using the Implicit 

Condensation and Expansion (ICE) approach in [8, 9] with the fixed-interface and characteristic constraint modes 

that were originally derived in [12], which reduces the number of static constraint modes at the interface. This 

reduction drastically reduces the upfront CPU cost of creating reduced order models (ROMs) with ICE along with 

the order of the assembled model. 

The existing CMS approaches in the literature differ by the types of component modes, or Ritz vectors, used to 

reduce the FEA model. The first substructuring method developed for linear systems was presented by Hurty in [13] 

using fixed-interface vibration modes, which Craig and Bampton later simplified in [14]; other methods based on 

free-interface vibration modes were developed later in [15-18]. The Craig-Bampton (CB) substructuring approach 

[14] reduces each subcomponent model with fixed-interface modes and static constraint modes to account for 

deformation at the interface. For FEA models with many connecting degrees-of-freedom (DOF), these reduced order 

models may still be prohibitively large since one constraint mode is needed for each interface DOF. Furthermore, 

the CB basis may become ineffective with a high density of closely spaced nodes on the interface [19]. Castanier et 

al. developed system-level characteristic constraint (S-CC) modes in [12] where they perform a secondary modal 
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analysis on the interface DOF of the assembled CB models in order to reduce the number of static constraint modes, 

or interface DOF. Later, Hong et al. [20] developed local characteristic constraint (L-CC) modes for local interface 

reduction by solving a secondary modal analysis of a CB ROM at the subcomponent level, allowing for the CC 

modes to be calculated without knowledge of the adjacent structure(s). Others works regarding interface reduction 

can be found in [21-23]. 

A variety of indirect methods have been developed to generate ROMs of geometrically nonlinear finite element 

models built directly within commercial FEA packages, as reviewed in [10, 24]. These methods project a set of 

component modes onto the nonlinear FEA equations of motion to obtain a set of low order, nonlinear modal 

equations. In commercially available FEA software, the linear mass and stiffness matrices can be readily exported, 

however the nonlinear stiffness terms due to geometric nonlinearity cannot. Therefore, an indirect approach is 

needed to identify the nonlinear portion of the modal model (i.e. a quadratic and cubic polynomial function of modal 

coordinates) using a series of static load cases with either applied forces [8, 9, 25] or enforced displacements [3, 26]. 

The resulting model offers significant computational savings for response prediction compared to the direct 

integration of the full order model. Several existing works to date reduce the monolithic FEA model with its linear 

vibrations modes [3, 7, 10, 25-28], although the enforced displacements procedure sometimes augments bending 

vibrations modes with a set of dual [27] or companion [29] modes to capture in-plane kinematics. More recently, 

other modes such as fixed-interface modes with static constraint modes have been used to create reduced 

subcomponent FEA models for the purpose of substructuring (e.g. see [30-32]). 

Most developments of the indirect model reduction approach have sought to generate a ROM of a structure using 

its monolithic FEA model. While this approach has been very effective for many studies, it becomes exceedingly 

expensive if the system requires many modal DOF to capture the kinematics, in turn requiring a prohibitively large 

number of static load cases to fit the nonlinear stiffness coefficients. For example, to fit the coefficients for a 20-

mode model using ICE, one must apply 9,920 permutations of static loads, whereas a 50-mode and a 100-mode 

model would require 161,800 and 1,313,600, respectively [8]. This cost has been addressed to some extent using the 

enforced displacement procedure in [26], which uses the tangent stiffness matrix to more efficiently compute the 

polynomial coefficients, requiring the number of static loads on the order of
 
N

2
 compared to N

3 
with the ICE method 

(where N is the number of modes in the basis). They demonstrated the procedure by reducing a 96,000 DOF model 

of a 9-bay panel to an 85-mode model, but even then it was challenging to determine which modes to include and 
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what displacements to apply to determine the nonlinear stiffness. A modal substructuring approach divides a large, 

complicated model into smaller subcomponents, each of which are far simpler and easier to create a validated 

model. The subcomponent models can then be assembled to generate a global ROM of the assembly that takes into 

account the effects of geometric nonlinearity. Another advantage to the substructuring approach is that during the 

design stage the subcomponents are typically redesigned by different teams and independently of the global 

structure, and so it is more convenient to modify and recompute the models for smaller, simpler subcomponents 

rather than a larger, global model. 

A modal substructuring approach for geometrically nonlinear FEA models is proposed here by generating 

subcomponent ROMs using the ICE procedure reduced with fixed-interface and characteristic constraint (CC) 

modes that are then assembled using a primal approach, just as done with linear systems [33, 34]. The authors first 

explored this approach by assembling subcomponent ROMs reduced with free-interface modes [35], but it was 

found that far too many modes were required to obtain acceptable accuracy. Later the authors explored the use of 

fixed-interface and constraint modes (e.g. Craig-Bampton modes) on an assembly of two geometrically nonlinear 

beams [30, 32], where the connecting interface had only one DOF. This approach performed very well for a model 

with a simple interface, however for a continuous interface with more than a few DOF, the number of constraint 

modes would prohibit the use of the ICE approach, hence motivating the use of characteristic constraint modes. 

Perez was the first to suggest the use of this basis on a complicated multi-bay panel with the enforced displacements 

procedure in [31]. He found that a linear substructuring approach could reduce the linear model from 96,000 DOF to 

232 DOF using fixed-interface and constraint modes reduced using proper orthogonal decomposition. The nonlinear 

modal substructuring was not actually pursued in his work as the reduction of the monolithic structure only required 

89 DOF using linear bending modes and dual modes. 

The paper is outlined as follows. Section II presents the theory behind the synthesis of nonlinear reduced order 

models created with fixed-interface and characteristic constraint modes (abbreviated as CC-NLROMs). This section 

also discusses two methodologies to compute the characteristic constraint modes and how to use these in a 

substructuring framework (i.e. how to assemble the reduced models created with each basis). The modal 

substructuring approach is then demonstrated in Section III on an example problem where two geometrically 

nonlinear flat plates with simple supports at all the edges are coupled at a continuous interface through the rotational 

degrees-of-freedom. The nonlinear normal modes (NNMs) of the assembly are used to evaluate the accuracy of the 
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assembled CC-NLROMs by comparing them to NNMs computed directly from the full order model of the plate 

assembly. This work defines the undamped NNM [36] as a not necessarily synchronous periodic response of the 

undamped nonlinear equations of motion, which has been found to provide a useful metric to evaluate the modal 

convergence of a nonlinear ROM [28, 30, 37, 38]. The conclusions are presented in Section IV.  

II. Theory  

A modal substructuring procedure for structural dynamic analysis first divides the global structure of interest into 

smaller substructures, whose equations are reduced at the subcomponent level before being assembled to provide a 

reduced order model. Therefore, we start with the spatially discretized, geometrically nonlinear finite element model 

of a subcomponent, giving the undamped, N-DOF equations of motion in the form,  

 ()tNL fxfKxxM =++ )(##  (1) 

Here, M  and K  are the NN³  linear mass and stiffness matrices, respectively, and ()xf NL  is the 1³N  nonlinear 

restoring force vector that accounts for the internal forces due to geometric nonlinearity. The 1³N  vectors x , x##, 

and ()tf  are the displacement, acceleration and external forces, respectively. The nonlinear modal substructuring 

procedure is outlined in the following three steps, each of which is covered in the subsections below.  

A. Select the subcomponent modal basis to reduce each subcomponent FEA model in Eq. (1). 

B. Generate the reduced modal equations with the basis defined in step A. 

C. Couple the nonlinear subcomponent models to obtain a reduced order model of the assembly. 

A. Fixed-interface Modes and Characteristic Constraint Modes 

 

In order to reduce each subcomponent FEA model, first a set of subcomponent modes, or Ritz vectors, are 

needed to capture the kinematics of each substructure. This work uses the fixed-interface modes and characteristic 

constraint modes developed in [12] and [20]; the theory is reviewed here. Note that any appropriate modal basis 

could be used, such as those developed for the other existing linear substructuring procedures reviewed earlier, 

however these bases are chosen because of the reduction on the interface DOF. Starting with the linear form of the 

equations of motion in Eq. (1) (i.e. when () 0xf =NL ), each DOF in x  is partitioned into either boundary DOF, bx , 

or interior DOF, ix . The boundary DOF are either shared by an adjacent structure, sometimes referred to as 
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interface DOF, or may have an external point load ()tf  applied to that location. The interior DOF are all the 

remaining coordinates of the system. The partitioned equations of motion of the full order, linear model become 
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The fixed-interface modes are computed by restraining all the boundary coordinates, bx , and solving the 

eigenvalue problem ( ) 0űMK =- riirii
2w  from the linear system matrices partitioned to only the interior DOF, ix , 

in Eq. (2). These fixed-interface modes are then mass normalized with respect to iiM . These shapes are augmented 

with a set of static shapes, known as constraint modes, which account for deformations at the boundary, or interface, 

DOF. One constraint mode is computed for every boundary coordinate in bx  by computing the static deflection to a 

unit displacement at each boundary DOF while holding all the other boundary coordinates fixed. These shapes are 

computed as, 
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The modal transformation matrix with fixed-interface modes and constraint modes then becomes, 
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where ikū  is the ki NN ³  matrix of mass normalized fixed-interface modes, I  is the identity matrix, and ibɊ  is 

the bi NN ³  matrix of constraint modes. The number of fixed-interface modes needed in the basis depends on the 

desired level of accuracy of the assembled ROMs. The total number of modal coordinates in the vector q  is the 

number of retained fixed-interface modes, kN , plus the number of constraint modes bN , denoted as bk NNm += . 

The resulting mN³  matrix CBT  is referred as the Craig-Bampton transformation matrix in [14, 33].  

 A CB reduced order model of the subcomponent is created by substituting Eq. (4) into Eq. (2) and pre-

multiplying by the transpose, ()T , of the CB transformation matrix, T
CBT , to give the form,  
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The vector ()tr  is added here and accounts for the unknown equal and opposite reaction force that will be applied by 

an adjacent structure, and kkȿ  is a diagonal matrix of squared natural frequencies of the fixed-interface modes. For 

FEA models with very detailed meshes at the interface, there may be many thousands of DOF at the boundary 

requiring many constraint modes in Ɋ. A reduction of these boundary coordinates, bx , can be achieved using two 

(slightly) different approaches involving a secondary modal analysis.  

1. System-level Characteristic Constraint (S-CC) Modes [12]  

 This approach is initiated by first assembling all the linear CB models from Eq. (5) using the primal formulation 

[14, 33]. Without loss of generality, coupling two linear subcomponents denoted with superscripts (A) and (B) 

produces the equations of motion of the assembly 
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A second modal analysis is performed on the assembled linear mass and stiffness matrices corresponding to the 

boundary DOF, bx , in Eq. (6) by solving the eigenvalue problem 

 
() ()( ) () ()( )( ) 0ɣMMKK =+-+ - rCCSbbbbrbbbb ,

BA2BA ˆˆˆˆ w  (7) 

These boundary eigenvectors, rCCS ,-ɣ , are truncated and used to assemble the cb NN ³  matrix CCS-Ɋ . The work 

in [12] uses this reduction to further reduce the assembled ROMs in Eq. (6), however the present study uses this to 

reduce the constraint modes in the CB transformation matrix in Eq. (4) as,   
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[ ]TTT ˆˆˆ
bcic ɊɊɊ=  is now the cNN³  matrix of system-level characteristic constraint modes that capture the 

"characteristic" motion of the interface for a single subcomponent. The total number of generalized coordinates in 

the vector p  becomes ck NNl += , and the lN³  matrix CCS-T  contains the fixed-interface modes and the 

system-level characteristic constraint modes. The generalized coordinates in the 1³l  vector p  have significantly 

fewer DOF than total number of N physical DOF in Eq. (1), and the m CB modal coordinates in Eq. (4). Note that 

with this approach, the compatibility of all the connecting DOF is achieved with the primal assembly of the CB 

models in Eq. (6), which ensures that the constraints along the interface are exactly enforced. The implications of 

this during the synthesis of the ROMs will be discussed further in subsection C. 

2. Local Characteristic Constraint (L-CC) Modes [20]  

 The preceding developments presume that the linear CB models are small enough to synthesize in order to 

compute the characteristic constraint modes from the linear assembly. In some cases, it might be preferable to 

reduce the interface without having to first assemble the subcomponents. One way to do this is to reduce the 

interface DOF of each substructure separately. Specifically, a secondary modal analysis is performed on the single 

subcomponent in Eq. (5) as, 

 ( ) 0ɣMK =- - rCCLbbrbb ,
2 ˆˆ w  (9) 

The boundary eigenvectors, rCCL ,-ɣ , are also truncated and used in the cb NN ³  matrix CCL-Ɋ  (note that with this 

approach, cN  can vary for each subcomponent). These shapes are then used to reduce the constraint modes in the 

CB transformation matrix in Eq. (4) as,   
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Again, the total number of generalized coordinates in the vector p  becomes ck NNl += , where now the lN³  

matrix CCL-T  contains the fixed-interface modes and the local characteristic constraint modes. This interface 

reduction does not account for the mass and stiffness of the adjacent structures, and does not guarantee compatibility 

along the interface DOF. However, this allows for a reduction to be performed without knowledge of the adjacent 
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subcomponent models, which may be desirable for re-analysis of assemblies requiring various configurations. The 

next subsection uses the modal bases derived in either Eq. (8) or Eq. (10) to reduce the geometrically nonlinear 

subcomponent model. 

B. Subcomponent Reduced Order Models with Geometric Nonlinearity 

 

In order to reduce the geometrically nonlinear, full order model in Eq. (1), again the displacements, x , must be 

sorted into the boundary and interior DOF as, 
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Here, either transformation matrix Eq. (8) or Eq. (10) can be used to reduce these equations, and will be referred 

generally as CCT  since the procedure is the same for either basis. The coordinate transformation is substituted into 

Eq. (11) and the resulting equations are premultiplied by T
CCT  to create the CC-NLROM equations of motion, 
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It is assumed that the subcomponent FEA models are created in a commercial software package, so the unknown 

nonlinear modal restoring force can be defined generally as  
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The nonlinear function ( )lppp ,,, 21 2ɗ  depends on each of the modal coordinates, p , in the reduction basis. Many 

common large displacement strain models [1, 2] have shown that ()xf NL  is expressible as a quadratic and cubic 

polynomial function, therefore the same functional form will hold for the modal form of the equations, as done in 

[10, 24]. Therefore, the r
th

 row of the nonlinear modal restoring force is given as, 
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The nonlinear stiffness coefficients rA  and rB  are not explicitly available when the FEA models are built directly 

in a commercial software package, so an indirect approach [10, 24] is used to determine these values. 

This work uses the Implicit Condensation and Expansion method in [9] to estimate the unknown coefficients by 

applying a series of static forces to the full, nonlinear FEA substructure model in Eq. (1). The FEA software 

performs the static analyses to determine the resulting deformations to a permutation of static forces that are the 

sums and differences of either one, two or three of the component modes in CCT . For example, the d
th

 static force 

combination of the r
th

, s
th

, and v
th

 mode shapes can be arbitrarily defined as  
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The load scaling factors rf̂ , sf̂ , and vf̂  correspond to the force amplitude applied for the mode in the r
th

, s
th

, and 

v
th

 column of the matrix CCT , and dF  is an 1³N  static force vector for the d
th

 load case. A set of these force 

permutations and the computed responses are used with the unconstrained least squares approach to fit the unknown 

coefficients rA  and rB . More details on this fitting procedure can be found in [8], and more specific details on the 

load scaling and force permutations can be found in [8, 30].  

There is an upfront CPU cost incurred by the ICE procedure as a result of the static analyses required to fit the 

modal equations. The number of load cases to fit Eq. (14) scales as 
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where again l is the total number of modes used in the basis. One advantage of the ICE procedure is that only 

bending type fixed-interface modes need to be included in the transformation matrix CCT  since the effects of 

membrane-bending coupling are implicitly captured when fitting the coefficients, hence reducing the number of 

required static load cases. Also, the system-level or local characteristic constraint modes offer a more efficient basis 

by drastically reducing the number of constraint modes, thus improving the upfront computational cost to fit these 

models. Since the basis does not have any membrane or axial type motions, the expansion process discussed in [9, 
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30] can be used as a post processing step to accurately capture the in-plane deformations caused by the geometric 

nonlinearity, ultimately allowing these models to accurately predict strains and stresses. 

C. Primal Assembly of Nonlinear Subcomponent Models 

The subcomponent models, termed CC-NLROMs, are coupled to any adjacent nonlinear (or possibly linear) 

substructure(s) using a primal formulation to satisfy the compatibility and equilibrium conditions at the interface. 

Without loss of generality, consider the assembly of two CC-NLROMs, denoted as (A) and (B), whose equations of 

motion are given by Eqs. (12)-(14). To join these two structures, only the compatibility condition at the boundary 

DOF need be satisfied (i.e. 
)()( B

b
A

b xx = ). Assembling the equations using standard finite element techniques causes 

the unknown reaction forces at the boundary to cancel, and the equations of motion for the assembled system 

becomes, 
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(17) 

The subcomponent matrices ()pN1  and ()pN2  are the quadratic and cubic nonlinear stiffness matrices, 

respectively, for each subcomponent, as done in [30, 39]. This form directly generates the Jacobians needed to 

efficiently solve the response with nonlinear implicit integration schemes [40]. The unconstrained coordinates up  

always satisfy the appropriate compatibility condition, and are related to the constrained coordinates through the 

connectivity matrix L . The compatibility condition and hence the connectivity matrix required to assemble the 

subcomponent models depends on the type of characteristic constraint modes (system-level or local) used to 

generate the reduced modal equations; the approach for each basis is discussed below. 

1. Compatibility with System-level Characteristic Constraint Modes 

 Compatibility is explicitly enforced for the S-CC modes since they are computed from the linear mass and 

stiffness matrices associated with the boundary DOF of the assembled CB models. As a result, it can be shown that 

the generalized coordinates of each characteristic constraint mode in Eq. (8) must be equal, meaning that 
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() ()
ccc qqq == BA . The substructure coupling matrix L  relating the constrained coordinates to the unconstrained 

coordinates is defined as, 
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 (18) 

This approach guarantees compatibility at each physical boundary DOF (i.e. 
)()( B

b
A

b xx = ). 

2. Compatibility with Local Characteristic Constraint Modes 

 The local characteristic constraint modes do not a priori account for compatibility at the interface, and as a result 

the constraints at the boundary DOF, bx , must be weakened (i.e. 
)()( B

b
A

b xx º  in a least-squares sense). The two  

subcomponent models (A) and (B) can be assembled by defining the L-CC modal coordinates of (A), )( A
cq , as the 

independent boundary DOF, and those of (B), )(B
cq , as the dependent DOF, making the compatibility condition,  

 
() ()( ) () ()
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A A B B

c c L CC L CC c- -= =q q Ɋ Ɋ q  (19) 

where the superscript ()
†

 denotes the pseudo inverse operation. With this condition, the substructure coupling 

matrix L  is defined to eliminate the redundant DOF, which in this case are the L-CC modal coordinates of 

subcomponent (B). Similar to Eq. (18), this becomes, 
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 (20) 

Due to the truncation of local characteristic constraint modes, not every physical DOF at the boundary can be 

enforced with compatibility, resulting in a weaker constraint at the interface.  
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The assembled equations of motion in Eq. (17) are written in terms of the connectivity matrix L , and each of 

the subcomponent CC-NLROMs identified in the previous subsection. The free or forced response to a given initial 

condition or time varying external force can be integrated using the reduced order model in Eq. (17) at a 

significantly lower cost than directly integrating a full order FEA model of the assembly. The modal substructuring 

methodology is demonstrated in the next section by computing the nonlinear normal modes of the ROM in Eq. (17) 

with various combinations of component modes included in basis. This comparison is conceptually similar to a mesh 

convergence study for linear systems, and has been shown to effectively gauge the accuracy of a nonlinear ROM 

[28, 30, 37, 38]. 

I II.  Numerical Results: Coupling Elastic Plates with Continuous Interface  

 The nonlinear modal substructuring approach was applied to the assembly of two geometrically nonlinear, flat 

plates coupled to one another along a continuous interface. Each plate had simple supports at all nodes around the 

edges, and was modeled in Abaqus®. A schematic of these FEA models is shown in Fig. 1, where the two 

substructures were coupled at all x, y, and z rotational DOF along a shared edge. The 9 inch by 9 inch (229 mm by 

229 mm) plate was modeled with 1,296 S4R shell elements (a 36³36 grid), while the 9 inch by 6 inch (229 mm by 

152 mm) plate had a total of 864 S4R shell elements. Each plate had a uniform thickness of 0.031 inches (0.787 

mm); thin-walled structures such as these can experience large deformations even while the materials remain within 

their elastic range. The material properties were those of structural steel having a Young's modulus of 29,700 ksi 

(204.8 GPa), shear modulus of 11,600 ksi (80 GPa), and mass density of 7.36∙10
-4 

lb-s
2
/in

4
 (7,870 kg/m

3
). A total of 

37 nodes were along the connection points, meaning there were 111 DOF at the interface.  
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Figure 1. Schematic of coupling two geometrically nonlinear plates with simple supports at all edges. The FEA 

model of the total structure has simple supports at all edges and DOF along the red line where to two plates join. 

A. Linear Substructuring Results 

 

 The linear FEA models of the plates were first used to evaluate the linear substructuring problem, which 

provides insight into the basis selection for the nonlinear substructuring problem. The first 12 system-level and local 

characteristic constraint modes were computed for each plate and compared to one another in Table 1. The analysis 

shows that each L-CC mode has a MAC value of 1.00 when compared to the S-CC mode (note that the shapes for 

the S-CC modes are shown later in Table 2), suggesting that the system-level and local approach produces the same 

shape. The only difference is the associated frequencies from the secondary modal analysis. Recall that the S-CC 

modes have the same frequencies since they are computed from the mass and stiffness of the assembled CB ROMs. 

The first three L-CC modes for the two plates have different frequencies, but agree with one another starting with 

the 4
th

 mode. 

 Table 1. Comparison of system-level and local characteristic constraint modes. 

Characteristic 

Constraint 

Mode Number 

System-level 

CC modes 

Local CC modes for 9-

inch plate 

Local CC modes for 6-

inch plate 

Frequency (Hz) Frequency (Hz) MAC Frequency (Hz) MAC 

1 140.2 120.3 1.00 171.1 1.00 

2 420.9 412.5 1.00 429.4 1.00 

3 930.7 928.9 1.00 930.7 1.00 

4 1661 1658 1.00 1658 1.00 

5 2610 2606 1.00 2606 1.00 

6 3785 3778 1.00 3778 1.00 

7 5196 5185 1.00 5185 1.00 

8 6853 6837 1.00 6837 1.00 

9 8769 8747 1.00 8747 1.00 

10 10960 10930 1.00 10930 1.00 

11 13440 13400 1.00 13400 1.00 

12 16240 16190 1.00 16190 1.00 

 

 Since the S-CC and L-CC mode shapes are practically the same for this problem, the linear substructuring 

analysis is demonstrated with the system-level characteristic constraint modes. Table 2 gives the natural frequencies 

and mode shapes of the fixed-interface and S-CC modes for each subcomponent model. The exact modes of the full 

FEA model of the assembly are shown in the far right column to provide a reference solution against which to 

compare the substructuring results that will be presented later.  

Table 2. Linear subcomponent modes used with the fixed-interface and S-CC mode reduction. 
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Mode 

Number 

Fixed-interface 

modes: 9”x9” plate 

Fixed-interface 

modes: 9”x6” 

plate 

System-level 

characteristic 

constraint modes 

Truth modes of total 

structure 

1   87.1 Hz   156.8 Hz   140.2 Hz  78.4 Hz 

2  190.6 Hz   254.4 Hz  420.9 Hz  135.1 Hz 

3  216.6 Hz   430.1 Hz  930.7 Hz  185.7 Hz 

4   317.7 Hz   449.5 Hz  1660 Hz  203.0 Hz 

5  371.4 Hz   547.0 Hz  2610 Hz  239.5 Hz 

6   420.3 Hz   685.2 Hz  3785 Hz  306.4 Hz 

7  494.6 Hz   717.4 Hz  5196 Hz  365.7 Hz 

8  521.5 Hz   915.3 Hz  6853 Hz  368.2 Hz 

9  630.0 Hz   965.6 Hz  8769 Hz  419.7 Hz 

10   696.1 Hz   1014 Hz  10.96 kHz  434.1 Hz 

11   700.6 Hz   1021 Hz  13.44 kHz  474.4 Hz 

12  749.8 Hz   1183 Hz  16.24 kHz  485.5 Hz 
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For this example, the frequency range of interest was 0-500 Hz, so the first 12 modes of the total structure in 

Table 2 were taken as target modes. A typical rule of thumb for linear substructuring is to include subcomponent 

modes up to 1.5 to 2.0 times this range. Even though the system-level characteristic constraint modes have 

associated eigenfrequencies from the secondary modal analysis in Eq. (7), this rule of thumb is not well established 

for these modes. When deciding which S-CC modes to retain in the basis, it was determined that these should be 

selected such that the accuracy of the CB substructuring approach was preserved. This was done by computing the 

maximum percent frequency errors between the modes predicted by the assembled CB ROMs, and those from the 

assembly of truncated S-CC ROMs. This is demonstrated on the linear plates with subcomponent fixed-interface 

modes up to 750 Hz, 1,000 Hz and 1,500 Hz, or 1.5, 2.0 and 3.0 times the frequency band of interest, respectively. 

The maximum of the percent frequency error between all the modes predicted by the assembled S-CC ROMs and 

the assembled CB ROMs is shown in Fig. 2 as S-CC modes were added to the basis. As the number of S-CC modes 

increases the error precipitously falls down below 0.01%, hence for each case the number of S-CC modes included 

was chosen such that the maximum percent error in the linear frequencies fell below 0.01 %. Returning to Table 2, 

one can see that the maximum frequency of the S-CC modes that were included is beyond the frequency range of 

interest in each case. 
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Figure 2. Maximum percent error of the assembly modes predicted by the CB ROMs and the S-CC ROMs as the 

number of S-CC modes were increased in the basis. The lines represent the number of fixed-interface modes 

included in each ROM: up to (red squares) 750 Hz, (blue circles) 1,000 Hz and (green asterisks) 1,500 Hz.  

 

Hence, four, five and six S-CC modes were included in the ROM basis for the cases where the fixed-interface 

modes were included up to 750 Hz, 1,000 Hz, and 1,500 Hz, respectively. The total number of DOF in each of the 

assembled reduced order models was then 23, 30, and 44 DOF. Even after truncating the S-CC modes in this 

manner, the resulting model still provides the same predictive accuracy as the full assembled CB ROMs, which have 

111 constraint modes. The percent frequency errors in Table 3 compare the predicted modes with those of the full 

FEA model of the total structure, providing insight into the accuracy of these assembled S-CC ROMs (and 

ultimately the CB substructuring approach). The lowest order ROM predicted the assembly modes up to 500 Hz 

very well including linear modes up to only 1.5 times the frequency band of interest; the largest frequency error was 

0.39 % in the 11
th

 mode. Additional modes in the basis lowered the frequency error further, as expected. The last 

column of Table 3 compares the linear substructuring results with a ROM created with 6 local characteristic 

constraint modes for each plate, and fixed-interface modes up to 1,500 Hz. This modal basis performs quite well 

when predicting the natural frequencies of the assembly modes, comparable to the S-CC modal basis.  

 

Table 3. Percent frequency error of the first 12 assembly modes predicted by the assembled S-CC/L-CC 

ROMs and the full FEA model of the total structure. 
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Total Structure 

Mode Number 

% Error with 4 S-

CC modes and up 

to 750 Hz fixed-

interface modes 

% Error with 5 S-

CC modes and up 

to 1,000 Hz fixed-

interface modes 

% Error with 6 S-

CC modes and up 

to 1,500 Hz fixed-

interface modes 

% Error with 6 L-

CC modes and up 

to 1,500 Hz fixed-

interface modes 

1 4.4·10
-4

 1.7·10
-4

 6.7·10
-5

 -6.5·10
-3

 

2 7.2·10
-3

 4.8·10
-3

 4.0·10
-3

 -2.5·10
-3

 

3 1.2·10
-3

 -1.8·10
-4

 -1.3·10
-3

 -5.4·10
-3

 

4 7.4·10
-3

 4.0·10
-3

 2.8·10
-3

 1.1·10
-3

 

5 1.4·10
-2

 6.8·10
-3

 8.5·10
-4

 -7.0·10
-3

 

6 1.9·10
-2

 9.8·10
-3

 2.3·10
-3

 -1.1·10
-3

 

7 0.16 6.2·10
-2

 2.7·10
-2

 2.2·10
-2

 

8 5.7·10
-3

 3.8·10
-3

 1.7·10
-3

 -4.4·10
-4

 

9 2.0·10
-2

 1.1·10
-2

 2.1·10
-3

 -3.3·10
-3

 

10 1.5·10
-2

 5.7·10
-3

 2.4·10
-3

 2.2·10
-3

 

11 0.39 0.18 3.3·10
-2

 2.3·10
-2

 

12 2.4·10
-2

 1.3·10
-2

 3.1·10
-3

 -1.6·10
-4

 

 

 For a linear system, the S-CC ROMs with modes up to 750 Hz and 4 S-CC modes would be sufficient for 

response prediction. In the next subsection, all of these bases are used to compare the nonlinear substructuring 

approach since additional modes might be necessary to capture the dynamics of the nonlinear assembly. The system-

level characteristic constraint modes are used to generate the nonlinear reduced order models, which will be referred 

as CC-NLROMs, of the geometrically nonlinear plates in Fig. 1. The accuracy of the nonlinear substructuring 

approach is evaluated using nonlinear normal modes to capture a range of frequency and energy of operation.  

B. Nonlinear Substructuring Results 

 

 The CC-NLROMs of the two plate models were generated with the same set of fixed-interface and system-level 

characteristic constraint modes used in the linear analysis (fixed-interface modes up to 750 Hz, 1,000 Hz and 1,500 

Hz with 4, 5 and 6 S-CC modes, respectively). When generating the force permutations for the static loads in Eq. 

(15), the force amplitudes f̂  for each mode are typically chosen such that when a single-mode force (e.g. 

rrCCSr f̂,-=KTF ) is applied to the linear FEA model, the maximum displacement is on the order of one thickness. 

For the CC-NLROMs generated here, each mode in the CCS-T  basis was scaled to force the linear system to a 

maximum displacement of 0.25 times the thickness, or 7.75·10
-3

 inches (0.197 mm). More details on the scaling can 

be found in [8, 28, 30]. Once the coefficients in Eq. (14) were identified, the CC-NLROMs were coupled and the 
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equations of motion in Eq. (17Error! Reference source not found.) were used to compute the nonlinear normal 

modes [36] using the continuation algorithm in [41]. The first three NNMs from the assembled CC-NLROMs are 

compared with the NNMs of the full FEA model of the total structure in Fig. 3. The full order model NNMs were 

computed using the applied modal force (AMF) algorithm in [42], which non-intrusively computes the NNMs 

directly from a finite element model within its native code. These curves were quite expensive to compute since the 

model had >10,000 DOF. These provide a reference solution to compare the accuracy of the assembled CC-

NLROMs, analogous to the comparison of linear normal modes in the previous subsection.  



 21 

10
-4

10
-3

10
-2

10
-1

70

80

90

100

110

120

Energy, in-lbf

F
re

q
u

e
n

c
y
, 
H

z

 

 
Full FEA Model

CC-NLROMs up to 750 Hz

CC-NLROMs up to 1,000 Hz

CC-NLROMs up to 1,500 Hz

10
-4

10
-3

10
-2

10
-1

130

135

140

145

150

155

Energy, in-lbf

F
re

q
u

e
n

c
y
, 
H

z

10
-4

10
-3

10
-2

10
-1

180

190

200

210

220

Energy, in-lbf

F
re

q
u

e
n

c
y
, 
H

z

5:1 NNM 29

3:1 NNM 14

3:1 NNM 9

3:1 NNM 10

Solution (a)

3:1 NNM 6

5:1 NNM 13

5:1 NNM 18

9:1 NNM 34

9:1 NNM 35

Solution (b)

(a)

(b)

(c)

 

Figure 3. Frequency-energy plots of (a) NNM 1, (b) NNM 2 and (c) NNM 3 for the assembly of two plates in Fig. 1. 

Each curve was computed from the (black dotted) full order model of the total structure, assembled CC-NLROMs 

with fixed-interface modes up to (blue dashed) 750 Hz, (red dash-dotted) 1,000 Hz, and (green dotted) 1,500 Hz. 

 

 The first three NNMs of the plate assembly exhibit hardening nonlinear behavior as indicated by the increase in 

frequency with an increase in response energy; this is due to the membrane-bending coupling induced by large 

bending deformations. Each NNM branch in Fig. 3 started at a linear mode solution at low energy (or response 

amplitude), but increasing displacement amplitudes exercised the nonlinear restoring force in the equations of 

motion, changing the dynamic response. There are two notable features of the NNM branches in Fig. 3, namely the 

backbone, which occurs at the lowest possible energy for a given frequency, and the tongues, which emanate from 

the backbone. Each tongue corresponds to a modal interaction with other NNMs that oscillate at a strict integer ratio 
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of frequencies (see [36, 43] for further discussion of these solutions). AMF was run in a manner that caused all of its 

solutions (black circles) to remain along the main backbone; further computations would be needed to capture these 

modal interactions.  

The main backbones predicted by all of the assembled CC-NLROMs agree very well with those of the full order 

model, suggesting that even the lowest order model (with fixed-interface modes up to 750 Hz and 4 CC modes) 

could be used for accurate response prediction. Adding fixed-interface and S-CC modes to the basis did slightly 

affect the modal interactions predicted by the ROMs. For example, in Fig. 3c the modal interaction near 220 Hz 

started as a 3:1 interaction with NNM 14 (i.e. mode 14 oscillates at a frequency 3 times the fundamental frequency 

of ~220 Hz). The 750 Hz assembly of CC-NLROMs (blue dashed) continued along this tongue towards higher 

energies, whereas the 1,500 Hz assembly (green dotted) continued along a new tongue corresponding to a 5:1 

interaction with NNM 29. Since the 750 Hz model only had 23 DOF it would not be able to compute NNM 29, 

meaning that higher order ROMs were needed to capture these responses. Similar observations are made in Fig. 3b 

with the tongues emanating from the 3:1 interaction with NNM 9. The 1,500 Hz assembly of CC-NLROMs captured 

the 9:1 interactions with NNMs 34 and 35, both of which were not captured with the lower order models. An infinite 

number of these interactions can occur along the backbone of the NNM, and it is hard to determine the effect of 

these solutions on the accuracy of the ROMs.  

The higher order NNMs 4 through 10 computed with the 750 Hz and 1,500 Hz models were in agreement along 

the backbones, however NNM 11 was the first to show a slight disagreement (these results are not shown for 

brevity). This nonlinear convergence study helps identify when a sufficient number of modes have been included in 

the basis for the frequency bandwidth of interest. To further compare each model, the maximum out-of-plane 

displacements (i.e. when the velocity is zero) are shown in Table 4 for the solutions marked (a) and (b) in Fig. 3a 

using the full order model, and the two assemblies of CC-NLROMs with fixed-interface modes up to 750 Hz and 

1,500 Hz. The deformations predicted by the ROMs agree very well with the full order model; each ROM had a 

maximum error in out-of-plane displacement of 0.8% for solution (a), and 0.4% for solution (b). This match was 

expected from the agreement with the frequency-energy plots shown earlier. It is interesting to note that the 

deformations change as the energy increases along the backbone. More vibration energy was in the smaller 9 inch by 

6 inch (229 mm by 152 mm) plate at solution (b) as compared with solution (a), which was taken near the linear 

regime.  



 23 

Table 4. Table comparing the out-of-plane maximum deformation shapes of solutions (a) and (b) marked 

along NNM 1 in Fig. 3. 

 

Model Solution (a) at 83.2 Hz Solution (b) at 112.9 Hz 

 

 

 

 

Full Order Model 

  
 

 

 

CC-NLROMs with modes up 

to 750 Hz 

  
 

 

 

CC-NLROMs with modes up 

to 1,500 Hz 

  
 

The NNMs computed from the undamped equations of motion in Eq. (17Error! Reference source not found.) 

have an intimate connection to the forced steady state response of the damped system, as these undamped NNMs 

form the backbone to the forced response curves [36, 43-46]. Resonance of the damped response occurs in the 

neighborhood of the NNM when the damping forces exactly cancel out the harmonic forcing function. Therefore, by 

accurately capturing the NNMs, the damped forced response near resonance, which is when the structure is at its 

greatest risk of failure, will also be accurate.  Hence, the results presented above suggest that either of the CC-

NLROMs would accurately capture the forced response of the panel near resonance. 

During the course of this research, it was questioned whether it was truly important to capture the nonlinear 

stiffness of the characteristic constraint modes and their nonlinear couplings to the other modes. It was hypothesized 

that these terms might be negligible, in which case one could simply create a ROM from the fixed-interface 

structure, augment it with linear CC modes, and compute the response of the assembly.  To test this hypothesis, a 

separate modeling strategy was explored during this research where each nonlinear subcomponent ROM was 

estimated by fixing all of the boundary DOF in the FEA model in Eq. (11), computing the nonlinear modal model 
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from it using only the fixed-interface modes, and appending the linear CC modes without any nonlinear coupling in 

the modal equations of motion. These subcomponent models are referred to here as fixed-interface NLROMs (FI-

NLROMs), and were assembled in the same way as the CC-NLROMs. This approach was motivated by the potential 

computational savings obtained by only requiring static force permutations in Eq. (15) in the shapes of the fixed-

interface modes, and not the static constraint modes. For example, for the ROMs of the 9 by 9 inch (229 mm by 229 

mm) plate with fixed-interface modes up to 1,500 Hz, this would require only 15,226 load cases instead of 30,914 

for the CC-NLROM. Unfortunately, this approach was found to produce an inaccurate estimate of the first NNM, as 

shown in Fig. 4. 
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Figure 4. Frequency-energy plots of NNM 1 for the assembly of two plates. Each curve was computed from (black 

dotted) full order model of the total structure, (green dotted) assembled CC-NLROMs and (purple solid) assembled 

FI-NLROMs with fixed-interface modes up to 1,500 Hz. 

 

 The NNM predicted by the assembled FI-NLROMs with fixed-interface modes up to 1,500 Hz (and 6 linear CC 

modes) clearly disagrees with that predicted by the assembled CC-NLROMs with the same basis and the full FEA 

model. In order to quantify the importance of these results, the energy balance technique in [43, 47, 48] was used to 

compute the force amplitude required to excite resonance of the damped system with a single-point harmonic 

forcing function. In this calculation, each mode of the FI-NLROMs and CC-NLROMs was assumed to have 0.1% 

modal damping, which is near the damping level observed experimentally for similar structures [8]. A point force 
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was applied at the midpoint of the 9 inch by 9 inch (229 mm by 229 mm) plate in the out-of-plane direction.  This 

analysis predicted that a point force with an amplitude of 9.6·10
-3

 lbf (4.3·10
-2

 N) would excite resonance of the 

assembled FI-NLROMs at 90 Hz, resulting in a peak displacement of 0.0328 inches (0.833 mm). The calculations 

with the more accurate ROM predicted that this force amplitude would actually produce resonance at a significantly 

higher frequency (104.3 Hz) with a smaller peak displacement of 0.0295 inches (0.749 mm). The corresponding 

locations are marked with a (+) in Fig. 4. The accuracy of the modeling strategy and its resulting NNMs have a 

strong connection to the accuracy of the various forced response predictions.  

 The AMF algorithm took on the order of 2 to 3 days to compute each NNM of the 12,861 DOF full order model 

of the assembly using a desktop computer with an Intel® Core i7 CPU and 8 GB of RAM, so only a few "truth" 

solutions were available for comparison throughout this section. Each NNM from the CC-NLROM substructuring 

approach took anywhere from 15-30 minutes to compute, depending on the parameters used in the stepsize 

controller and the size of the ROM. The upfront cost to run the static analyses for each CC-NLROM is summarized 

in Table 5, along with the cost estimate if all 111 static constraint modes were used in the basis without any interface 

reduction (note that this would be the CB-NLROM approach in [30, 32]). For example, creating the CC-NLROMs 

with fixed-interface modes up to 1,500 Hz and 6 CC modes would require a total of 42,436 static load cases, taking 

46 hours on the desktop computed mentioned earlier, and the equivalent CB-NLROMs would require 5,808,336 

static loads and 248 days of CPU time. The interface reduction reduced the number of static loads required by ICE 

approach to identify each subcomponent model, making the modal substructuring approach feasible. For reference, 

creating an NLROM of the full plate assembly with linear modes up to 500 Hz and 1,500 Hz (a total of 12 and 41 

modal DOF, respectively) would require 2,048 static loads (4 hours) and 88,642 static loads (173 hours), 

respectively. In practice, this model would likely need more than modes up to 500 Hz to accurately capture all the 

NNMs in the 0-500 Hz frequency range, however this serves as the lower bound to the cost estimate.   

Table 5. Computational cost associated with the identification of nonlinear subcomponent models using 

ICE. 

 Fixed-interface modes up to 

750 Hz 

Fixed-interface modes up to 

1,000 Hz 

Fixed-interface modes up to 

1,500 Hz 

Model CB-NLROM  CC-NLROM  CB-NLROM  CC-NLROM  CB-NLROM  CC-NLROM  

 

9 inch by 9 

inch plate 

∙123 DOF 

∙2,451,226 

loads 

∙122 days 

∙16 DOF 

∙4,992 loads 

∙6 hours 

∙127 DOF 

∙2,699,258 

loads 

∙134 days 

∙21 DOF 

∙11,522 loads 

∙14 hours 

∙134 DOF 

∙3,172,584 

loads 

∙158 days 

∙29 DOF 

∙30,914 loads 

∙37 hours 

 

9 inch by 6 

inch plate 

∙118 DOF 

∙2,163,176 

loads 

∙11 DOF 

∙1,562 loads 

∙1 hour 

∙120 DOF 

∙2,275,520 

loads 

∙14 DOF 

∙3,304 loads 

∙3 hours 

∙126 DOF 

∙2,635,752 

loads 

∙21 DOF 

∙11,522 loads 

∙9 hours 
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∙74 days ∙78 days ∙90 days 

IV. Conclusions 

This paper presented a nonlinear modal substructuring approach for geometrically nonlinear structures by 

creating nonlinear subcomponent models with the Implicit Condensation and Expansion method [8, 9] using fixed-

interface modes and system-level characteristic constraint modes [12] as a basis. These low order models are 

assembled to provide a reduced order model that accounts for nonlinear effects. The interface reduction could be 

carried out with either system-level or local characteristic constraint modes to drastically reduce the number of DOF 

describing the interface, hence lowering the upfront computational cost associated with the identification of the 

nonlinear stiffness coefficients in the subcomponent models. The synthesized CC-NLROMs are orders of magnitude 

smaller compared to the full order finite element model yet maintain acceptable accuracy. A substructuring approach 

has the advantage of dealing with several small, simpler subcomponent models compared to one large complicated 

model. Often during the development and analysis of structural components, most design changes occur at a 

subcomponent level, therefore a modal substructuring approach makes it easier to update one subcomponent model 

rather than the entire model of the assembly.    

The substructuring approach with CC-NLROMs was demonstrated by coupling two thin plates with geometric 

nonlinearity. The NNMs were computed from the assembled CC-NLROMs equations generated with an increasing 

number of fixed-interface and system-level characteristic constraint modes. The results showed excellent agreement 

along the backbone predicted by each ROM and the full order model. The only difference with the higher order 

ROMs is the computed modal interactions along the NNM branch, which account for interactions with higher order 

NNMs. The results show how the maximum deformation shape evolves along the backbone of NNM 1, providing 

helpful insight into the evolution of the stress fields experienced by the system at various resonant conditions. The 

NNMs serve as a signature of the equations that quickly identify whether or not a model captures some important 

solutions of the full order model; if the reference NNMs solutions were not available, the convergence of the CC-

NLROMs would suggest the models have a sufficient basis to capture the NNMs, making this a powerful 

comparison metric. Due to the intimate connection between the NNMs and the forced, damped response, a ROM 

that can accurately predict the NNMs will likely predict the response to other load scenarios [28, 36, 38, 44-48].  
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